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Abstract. XML query processing is one of the most active areas of
database research. Although the main focus of past research has been
the processing of structural XML queries, there are growing demands for
a full-text search for XML documents. In this paper, we propose XICS
(XML Indices for Content and Structural search), novel indices built on a
B+-tree, for the fast processing of queries that involve structural and full-
text searches of XML documents. To represent the structural information
of XML trees, each node in the XML tree is labeled with an identifier. The
identifier contains an integer number representing the path information
from the root node. XICS consist of two types of indices, the COB-tree
(COntent B+-tree) and the STB-tree (STructure B+-tree). The search
keys of the COB-tree are a pair of text fragments in the XML document
and the identifiers of the leaf nodes that contain the text, whereas the
search keys of the STB-tree are the node identifiers. By using a node
identifier in the search keys, we can retrieve only the entries that match
the path information in the query. Our experimental results show the
efficiency of XICS in query processing.

1 Introduction

The efficient processing of XPath [1] or XQuery [2] queries is an important
research topic. Since the logical structure of XML is a tree, establishing a rela-
tionship between nodes such as parent-child or ancestor-descendant is essential
for processing the structural part of queries. For this purpose, many proposals
have been made such as structural joins, indexing, and node labeling [3–8].

In the last few years, the XML full-text search has emerged as an important
new research topic [10, 11]. However, efficient processing of XML queries that
contain both full-text and structural conditions has not been studied well. In
this paper, we propose XICS (XML Indices for Content and Structural search),
which aims at high-speed processing of both full-text and structural queries in
XML documents. An important design principle of our indices is the use of a
B+-tree. Because the B+-tree is widely used in many database systems, building
indices on a B+-tree rather than creating a new data structure from scratch is an
important design choice from a practical point of view. Several indices for XML
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documents using a B+-tree have already been proposed. For example, XISS [3] is
a node index approach on a B+-tree. XISS is flexible in that the basic unit to be
indexed is a node; however, to process a query, the query needs to be decomposed
to a node unit, and then intermediate results need to be joined. The XR-Tree
[4] is another tree-structured index for XML documents. In an XR-Tree, nodes
in XML documents are labeled and stored in an extended B+-tree index.

These indices efficiently preserve the ancestor-descendant or parent-child re-
lationship between nodes; however, they do not take full-text searches into con-
sideration. Recently, an indexing approach compatible with a full-text search
for XML documents that integrates structure indexes and inverted lists was
proposed in [14], which uses element names or keywords as a search key of in-
dices. In our approach, to accelerate both the structures and full-text searches
of XML documents, we constructed a B+-tree in which the search keys are a
pair of text fragment t and the node identifier of the leaf node which contains
t. The node identifiers consist of two parts: a path identifier that indicates the
path from the root node and the Dewey-order among sibling nodes sharing the
same path identifiers. Search keys are first sorted by text fragments; hence, the
index entries that contain the same text are clustered in the index. In such a
cluster, entries representing nodes that have the same structure are clustered
together. We call this type of index a COB-tree (COntent B+-tree). We can
answer XPath queries involving both structure and contents specifications such
as “//title[contains(.,’XML’)]” , which needs a join operation in the case of [14],
by traversing the COB-tree only once.

A COB-tree is not suitable for processing structural queries such as “//title”,
because entries in a COB-tree are first sorted by text. Therefore, we constructed
another type of B+-tree called an STB-tree (STructure B+-tree). In an STB-
tree, the above-mentioned node identifiers are used as search keys. An important
observation about an STB-tree is that entries are not clustered by element name.
This is because path identifiers do not, in general, cluster nodes having the
same element names. To manage this problem, we have developed a search-key
mapping technique in which index entries are sorted by the lexicographical order
of the reverse path (the element path from the node upward to the root node)
and not by the path identifier itself. Reverse paths are effective in processing
XPath queries that include “//”. When searching, the index is traversed by
mapping the reverse path to the path identifiers. By employing the search-key
mapping technique, entries relevant to the nodes that have the same tag name
are clustered in the index; hence, a query such as “//title” can be processed
efficiently.

XICS consists of a COB-tree and an STB-tree. In general, when processing
an XPath query having the contains() function, we can filter nodes using the
text conditions or the structural conditions in the query. The use of the XICS
can accelerate both types of filtering. We have implemented a COB-tree and an
STB-tree using GiST [12]. The experimental results show the effectiveness of
XICS.
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2 PSP: A Node Labeling Scheme

In this section, we explain our node labeling scheme using the XML document
shown in Figure 1. Figure 1 is a tree representation of an XML document. The
ovals, triangles, rhombi, and strings in the rectangles represent element nodes,
attribute nodes, text nodes, and text values, respectively.
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Fig. 1. Tree representation
of sample XML document.

Table 1. Correspondence of path
and path identifier.

Path Path
Identifier

/document 1
/document/title 2
/document/title/@lang 3
/document/section 4
/document/section/title 5
/document/section/section 6

Node labeling schemes play an important role in XML query processing, and
thus many studies [3, 8] of them have been made. A widely used node identifier
is a pair of preorder and postorder, which can uniquely reconstruct the topology
of an XML tree. However, such node identifiers do not convey element names or
path information. It is important to obtain such information easily from a node
identifier in order to quickly obtain the nodes corresponding to path expressions
in the query. Therefore, we have designed a node labeling scheme in which node
labels contain a path identifier. A path identifier identifies the path from the root
node to a node. Table 1 shows an instance of path identifiers assigned to the paths
in the XML document in Figure 1. In general, we cannot uniquely distinguish
the nodes in an XML document only by path identifier. For example, the two
nodes corresponding to “/document/section” in Figure 1 have the same path
identifier. Therefore, we have introduced the Sibling Dewey Order to preserve
order information among sibling nodes. The Sibling Dewey Order of the root
node is 1. The Sibling Dewey Order of a non-root node n is a concatenation of
the Sibling Dewey Order of the parent of n and the sibling order of n among
siblings assigned the same path identifiers.

We call a pair of a path identifier and a Sibling Dewey Order a PSP (Path Sib-
ling Pair). Nodes are uniquely identified by a PSP. For example, with reference
to the path identifiers in Table 1, each node in Figure 1 is labeled by a PSP (x; y),
where x denotes a path identifier, and y denotes a Sibling Dewey Order. For ex-
ample, the path from the root node to node n3 is “/document/section/section”,
so the path identifier is 6 Furthermore, node n3 is the second sibling among the
sibling nodes with the same element name. Therefore, the Sibling Dewey Order
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of the node n3 becomes 1.1.2. because the Sibling Dewey Order of the parent
node n2 is 1.1. and the sibling order of n3 is 2.

The nature of PSP makes it possible to identify the nodes at the instance
level and to easily verify the parent-child or ancestor-descendant relationship
between nodes. We can quickly obtain the path relationship between two nodes
by referring to the inclusive relationship of the paths corresponding to the path
identifiers. Note that the table storing the correspondence between paths and
path identifiers is small enough to be kept in the main memory. Once a path
relationship among nodes is verified, the instance level parent-child or ancestor-
descendant relationship is verified by the subsequence matching of the Sibling
Dewey Order. The PSP compactly conveys useful information for processing
queries efficiently.

3 Index Construction

We propose two kinds of indices on a B+-tree: A COB-tree (COntent B+-tree)
and an STB-tree (STructure B+-tree). The search keys in a COB-tree are the
pairs of the text fragment and the PSP of the node in which the text appears,
which is used for processing a query that involves both the text and structure of
the XML document. The search keys in an STB-tree are the PSP of all element
nodes and attribute nodes, which is used for processing queries that only involve
the structural information of the XML documents.

3.1 Text in COB-tree

To answer full-text searches and keep phrase information, we use the suffix texts
of a text in an XML document as the text in the search key of a COB-tree. For
example, the suffix of “Nodes in the XML are labeled” are as follows:

Nodes in the XML are labeled XML are labeled
in the XML are labeled are labeled
the XML are labeled labeled

Pairs of each of the suffix texts and the PSP of the node that contains the
suffix text make up the search keys of a COB-tree. However, keeping all phrase
information in the index increases the index size. Therefore, we decided to keep
only the words that were needed to distinguish the phrase from other phrases.
For example, when we refer to Figure 1, for the suffix “the XML are labeled”
of the text “Nodes in the XML are labeled”, we keep only the first three words
“the XML are” as these are enough to be distinguished from the suffix “the
XML document” of the text “We can get texts in the XML document”. Even
if the search phrase is longer than a matching text in the index, we can narrow
down the candidate nodes to only one.
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3.2 Search-Key Mapping

We must pay attention to the order of the keys, since the cost can be minimized
by retrieving adjacent leaf pages of a B+-tree. If we sort the path identifiers
in Table 1 simply by their value, there is almost no meaning to the order. In
general, it is difficult to meaningfully assign a unique value to the path. For
example, when we process the query “//title”, the path identifiers corresponding
to the path are expected to be clustered in the B+-tree. However, if we sort the
path identifiers simply by value, the path identifiers corresponding to the path
“//title” , which are 2 and 5 in the running example, are generally dispersed in
one or more leaf pages in the B+-tree.

To overcome this problem, we propose search-key mapping, in which the key
order is determined not by the key itself but by the value transformed when using
information about the key (mapping information). Table 1 is used to retrieve the
correspondence between path and path identifier in the following example. When
we process a query that contains “//”, such as “//title”, the path identifiers 2
and 5 are expected to be clustered in the index. When such a case is considered,
it is appropriate to order the path identifiers based on the reverse path of the
corresponding path in the B+-tree. That is, in this example, when we use “\”
as a delimiter of the reverse path steps, we prepare mapping information such
as “document\” for 1, “title\document\” for 2, “@lang\title\document\” for 3,
and so on. Then, the order of the path identifiers is determined based on the
lexicographical order of the corresponding reverse path. In this example, the
order of the path identifier using the mapping information is 3 <1 <4 <6 <2
<5. Generally, the mapping information is small enough compared with XML
documents, and we can retain it in the main memory. Therefore, ordering with
mapping information can be done very fast.

Entries corresponding to the nodes with the same tag name are clustered in
one location in the index, so we can process the XPath query containing “//”
efficiently. Furthermore, since the Sibling Dewey Order is ordered by comparing
the value of sibling numbers from the root node, the ordering of the key in an
STB-tree is determined first by the path identifiers, using mapping information,
and then by the Sibling Dewey Order when the path identifiers are equal. The
ordering of the key in a COB-tree is determined first by the text and then by the
same method as in an STB-tree when the texts are equal. The above approaches
permit the clustering of index entries corresponding to the nodes with the same
path in addition to the nodes that contain the same suffix text.

Figures 2 and 3 show an STB-tree and a COB-tree respectively, constructed
for the XML document in Figure 1. In these figures, the delimiter of the text and
the PSP is “,”, and the delimiter of the path identifier and the Sibling Dewey
Order is “;”. We set L = 3, which is a threshold for the maximum phrase length
of the text in a COB-tree to reduce the index size from a practical point of view.
For simplicity, the indices in Figures 2 and 3 are constructed so that one page
can contain a maximum of four entries; however, in actual indices, one page can
contain over 100 entries and in this way the height of the B+-tree is kept low.
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3.3 Prefix-Diff COB-tree

The size of a search key should be small in a B+-tree. The search key of a COB-
tree includes text, and if the phrase length of the text is long, the size of the
search key becomes large.

To cope with this problem, we pay attention to the fact that the texts in
the search keys contained within the leaf node pages of a COB-tree are ordered
lexicographically, and the texts that begin with the same phrase are clustered.
We compress the text in the search key by keeping only i) the length of the
common prefix with the previous search key; and ii) the following character string
after the common prefix. This compression can rebuild the text information in
a COB-tree losslessly and reduce the size of search keys. The first search key in
a leaf node page must keep the whole original text; however, the other search
keys can use the above-described compression technique.

When we search in a COB-tree, the entries are retrieved by a node page
block from a disk, and when we search a text in the leaf node page, texts in the
search keys are rebuilt first. On the other hand, in the internal node page of a
COB-tree, the search key can only be a text, or a text and a PSP pair that is
enough to determine which pointer to the child node page should be followed as
Prefix B-trees [15].

We call a COB-tree with the above compression a Prefix-Diff COB-tree. We
call a COB-tree without compression a Normal COB-tree when we need to dis-
tinguish them. Figure 4 shows a Prefix-Diff COB-tree. The texts of the search
keys in the leaf node pages in Figure 4 are compressed. For example, the com-
pressed text “[8]document” of the search key “[8]document,10;1.1.2.” indicates
that the original text is the same as the text in the previous search key up to
the eighth character followed by the different text “document”.

4 Query Processing

XPath queries [1] can be processed by traversing XICS and retrieving entries
relevant to the nodes corresponding to the query.
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Those queries that consist of a path information only can be processed by
traversing an STB-tree only once. We call such queries simple path queries. On
the other hand, those queries that have a contains() function for the target node
can be processed by traversing a COB-tree only once. We call these kinds of
queries full-text queries. Simple path queries and full-text queries are the basic
units of queries. Composite queries which have one or more predicates for the
nodes in the path of a query are first decomposed into these basic units. We
explain the query processing algorithms first for simple path queries and full-
text queries and then for composite queries.

In this section, we show some examples of processing XPath queries for the
XML document in Figure 1. We use Table 1 to retrieve the correspondence
between the path and the path identifier included in the PSP of a node.

4.1 Simple Path Queries

A simple path query has the form s1l1s2l2 . . . sklk, where each si is “/” or “//”
and li is a tag name. In this case, we first get the path identifiers that correspond
to this path. If either si is “//”, the multiple path identifiers are possibly re-
trieved. Then, we traverse the STB-tree with the path identifiers using search-key
mapping. An example of simple path query process is as follows:

– //title
The path identifiers corresponding to this path are 2 and 5. When traverse
in the STB-tree and retrieve entries that have a path identifier between 2
and 5, we can retrieve entries with search keys “2;1.1.” and “5;1.1.1.”. The
result of this query is the node positions of the “title” node included in each
entry. This query can be processed efficiently because the two entries are
clustered in the index by the search-key mapping technique.

4.2 Full-Text Queries

A full-text query has the form s1l1s2l2 . . . sklk[contains(.,′ text′)]. In this case,
we traverse the COB-tree using the text in the query. The structure information
of the query is also checked with the traversal. An example of full-text query
processing is as follows:

– //section/title[contains(., ’Tree’)]
We traverse the COB-tree using the text “Tree” and the structural infor-
mation “//section/title”, and retrieve the corresponding entries with search
key “Tree,5;1.1.1.”. We can get the position of the “title” node by following
the pointer of this search key.

4.3 Composite Queries

A composite query has the form s1l1[Pred1]s2l2[Pred2] . . . sklk[Predk], where
Predi is either a simple path query or a full-text query. In this case, the query can
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be processed by first decomposing the query to “s1l1Pred1”, “s1l1s2l2Pred2”,
. . . , “s1l1s2l2 . . . sklkPredk”, and “s1l1s2l2 . . . sklk”, and then joining each result.
An example of composite query processing is as follows:

– //section[title[contains(.,’Tree’)]]
We first decompose this query into q1=“//section/title[contains(.,’Tree’)]”
and q2=“//section”. Then the entry with the search key “Tree,5;1.1.1.” in
the COB-tree is retrieved as a result of the query q1, and the entries with
search keys “4;1.1.”, “4;1.2.”, “6;1.1.1.”, and “6;1.1.2.” in the STB-tree are
retrieved as a result of the query q2. By joining these PSP labels, we know
“5;1.1.1.” and “4;1.1.” are under a parent-child relationship, and we can get
the position of the target “section” node by following the pointer of “4;1.1.”.

5 Experiments

We implemented XICS and examined its effectiveness. We used GiST (Gener-
alized Search Tree) [12] for the implementation of B+-tree indices. We used the
XML documents provided by the INEX Project [13].

We compared XICS with the method proposed in [14], which is compatible
with full-text searches using inverted lists on tag names and keywords. We ex-
perimented with these inverted lists indexed by a B+-tree. In the rest of the
paper, we call the method proposed in [14] Integration. We applied a Prefix-Diff
approach to the indices except for the STB-tree, and we set L = 1 as the thresh-
old L for the maximum phrase length in the COB-tree, because Integration does
not support phrase searches.

5.1 Index Size

In the experiment on index size, we created and used four kinds of XML docu-
ment sets, changing the total size of the XML documents.

Figure 5 shows the size comparison of an STB-tree and an inverted list on
tag names of Integration, and Figure 6 shows the comparison of a COB-tree and
an inverted list on keywords. Each index size is nearly proportional to the size
of the XML document set. XICS is about 1.4 times larger than Integration.

5.2 Query Processing Time

We examined the query processing time with XICS and Integration using the
XPath queries in Table 2. We used the whole INEX document set (about 495
MB) in the experiment on query processing. Table 3 shows the processing time
of these queries.

A join operation between the query text position and the target node position
is needed in Integration (Q3, Q4, Q5 and Q6). Furthermore, a join operation for
specifying the sibling number in a query is needed in Integration (Q6). On the
other hand, in the case of XICS , we need a join operation when the query is
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Table 2. XPath queries for comparison with Integration.

XPath

Q1 /books/journal/title
Q2 //sec/st
Q3 //article/fm/abs/p[contains(., ’software’)]
Q4 //article[contains(./fm/abs/p, ’software’)]
Q5 //sec[contains(./st, ’animation’)]
Q6 //bdy/sec[1]/st[contains(., ’XML’)]

Table 3. Execution time
(time in milliseconds).

XICS Integration

Q1 78 65
Q2 410 1037
Q3 79 19040
Q4 278 21450
Q5 332 3649
Q6 68 46611

Table 4. Index traversal time
(time in milliseconds).

XICS Integration

Q1 78 65
Q2 410 1037
Q3 79 5137
Q4 188 446
Q5 321 510
Q6 68 1658

a composite query (Q4 and Q5). Since join processing is not the focus of our
current study, we did not use any special approach in the join operations. The
join operation time depends on the join algorithm. Table 4 shows the index
traversal time excluding the join operation time.

XICS achieved an execution time up to 685 times faster than Integration with
an exception for Q1. In the case of Q1, the “title” nodes in the XML document
set were very few, and the path information in the search keys of our indices was
not so significant. However, in general, we can traverse our indices efficiently by
using the path information in the search keys and only retrieve the entries that
match the path information in the query. For that reason, we can restrict nodes
in the join operation and reduce the whole processing time.

In XICS, we can use the Sibling Dewey Order to specify the sibling number,
and we don’t need any join operations for it. In general, we need costly join op-
erations to specify the sibling number in other approaches including Integration.
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6 Conclusions

In this paper, we proposed using XICS to accelerate the process of XPath queries.
XICS is based on a B+-tree and can efficiently process queries that involve struc-
tural and full-text searches of XML documents. We particularly concentrated on
texts in XML documents and constructed a COB-tree using PSP that contained
path information from the root node and the text fragments in the XML docu-
ment. In addition, we constructed an STB-tree for processing structural queries.
Search-key mapping enables the efficient processing of a query containing “//”.
We proposed a compression method in the COB-tree and built a Prefix-Diff
COB-tree. We then showed the processing steps for an XPath query using XICS.
The experiment results show that XICS is about 1.4 times larger than Integra-
tion. Paying this slight increase in the cost of the index size, XICS outperforms
Integration up to 685 times in terms of search time.

Future works include: a more appropriate choice of PSP, a pointer in the leaf
pages of the B+-tree, ordering that is not based on the reverse paths in search-
key mapping, improvement of the join operation, introduction of data statistics
and query workloads, and consideration of document updates.
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