
Kikori-KS: An Effective and Efficient Keyword

Search System for Digital Libraries in XML

Toshiyuki Shimizu1, Norimasa Terada2, and Masatoshi Yoshikawa1

1 Graduate School of Informatics, Kyoto University
shimizu@soc.i.kyoto-u.ac.jp, yoshikawa@i.kyoto-u.ac.jp
2 Graduate School of Information Science, Nagoya University

terada@dl.itc.nagoya-u.ac.jp

Abstract. Identifying meaningful document fragments is a major ad-
vantage achieved by encoding documents in XML. In scholarly articles,
such document fragments include sections, subsections and paragraphs.
XML information retrieval systems need to search document fragments
relevant to queries from a set of XML documents in a digital library. We
present Kikori-KS, an effective and efficient XML information retrieval
system for scholartic articles. Kikori-KS accepts a set of keywords as a
query. This form of query is simple yet useful because users are not re-
quired to understand XML query languages or XML schema. To meet
practical demands for searching relevant fragments in scholartic articles,
we have developed a user-friendly interface for displaying search results.
Kikori-KS was implemented on top of a relational XML database sys-
tem developed by our group. By carefully designing the database schema,
Kikori-KS handles a huge number of document fragments efficiently. Our
experiments using INEX test collection show that Kikori-KS achieved an
acceptable search time and with relatively high precision.

1 Introduction

Large number of documents in digital libraries are now structured in XML. An
XML document is a text marked up by using tags. Document fragments in an
XML document are identified by using tags and may have nested document
fragments. Identifying meaningful document fragments is a major advantage
achieved by encoding documents in XML. In scholarly articles, such document
fragments include sections, subsections, and paragraphs.

XML information retrieval (XML-IR) systems need to search document frag-
ments relevant to queries from a collection of XML documents in a digital library.
As the number of scholarly articles are increasing sharply, effective search sys-
tems are required. XML-IR systems can meet the growing demand for browsing
only document fragments, such as sections or paragraphs, relevant to a certain
topic.

There are several forms of queries for XML-IR systems. “XQuery 1.0 and
XPath 2.0 Full-Text”[1], being developed by W3C, is an XML query language
with full-text search capabilities. This form of query assumes users know XML



2 Toshiyuki Shimizu, Norimasa Terada, and Masatoshi Yoshikawa

specific query languages, such as XPath [2] or XQuery [3], and the XML schema
of documents. Although such an assumption is valid for a limited number of
advanced users, we should consider many other end-users of XML-IR systems
unfamiliar with XML query languages or XML schemas. As demonstrated by
Web search engines, a set of keywords is a simple, intuitively understandable,
yet useful form of queries, especially for unskilled end-users. Queries represented
by a set of keywords are also versatile in that they can be issued against XML
documents with heterogeneous schemas or without schema. In this paper, we
present Kikori-KS, an XML-IR system for scholarly articles. Kikori-KS accepts
a set of keywords as a query and returns document fragments in relevance order.

Developing an XML-IR system is a challenging task in many ways. Unlike
conventional IR systems, XML document fragments, which are the search results
of queries, can be nested each other. This feature raises an issue in the design of
the user interface. We have developed a new user-friendly interface for Kikori-
KS called the FetchHighlight retrieval interface. Because scholarly articles are
an important granule, the FetchHighlight retrieval interface displays articles in
relevance order, then for each article it shows document fragments in document
order. The underlying database schema was designed to meet the requirements
of the new user interface.

Furthermore, there are usually more document fragments than there are doc-
uments. For example, there are 16,080,830 document fragments against 16,819
documents in the XML collection used in our experiments. XML-IR systems
need to process queries efficiently against a huge number of document frag-
ments. Kikori-KS was implemented on top of a relational XML database system
developed by our group [4]. In addition to tables as an XML database system,
the database schema includes information on term weight. The system automat-
ically translates sets of query keywords into SQL queries. We have designed a
database schema specially tuned for fast query processing. Experiments show
Kikori-KS returns query results, on average, 7.2 times faster than our previous
method [5].

The rest of the paper is organized as follows. Section 2 explains the user
interfaces we developed. Section 3 describes a conceptual database schema used
in Kikori-KS, and we discuss how the database schema was refined and queries
were processed to meet the requirements of the user interface. Section 4 presents
the retrieval model used in Kikori-KS. Section 5 contains experimental results
on retrieval precision and query processing time. Finally, Section 6 concludes the
paper and presents future works.

2 User Interfaces

The granule of search targets for an XML-IR system are document fragments,
which may be nested each other. This feature raises an important new issue
when designing a user interface to browse search results. By considering users’
needs for the output of a search, the INEX 2005 project [6] defined the following
three strategies for element retrieval :



Kikori-KS: A Keyword Search System for DL in XML 3

E1
E2
E3
:

:

(a) Focussed (b) Thorough (c) FetchBrowse (d) FetchHighlight

E1
E2
E3
:

:

D1
E11
E12
E13
:

D2
E21
E22

:

D1
E11
E111
E112

E12
:

D2
E21

:

(Ei does not 

overlap with Ej)

Fig. 1. Interfaces for each strategy.

– Focussed retrieval strategy
The system retrieves only focussed elements (i.e. non-overlapping elements)
and ranks them in relevance order.

– Thorough retrieval strategy
The system simply retrieves relevant elements from all elements without
considering nestings and ranks them in relevance order.

– Fetch and browse retrieval strategy
The system first identifies relevant documents (the fetching phase), and then
identifies relevant elements within a fetched document (the browsing phase).
The retrieved documents are initially ranked on the basis of their relevance,
and then, the retrieved elements within a document are ranked in their rele-
vance order. In the rest of this paper, we call this strategy the FetchBrowse
retrieval strategy.

Figure 1 (a)-(c) show a naive and intuitive user interface image for each strategy.
In the Focussed retrieval strategy (Figure 1 (a)) and the Thorough retrieval strat-
egy (Figure 1 (b)), elements are displayed in descending order of their scores, i.e.
element Ei is ranked higher than element Ej iff the score of Ei is higher than
that of Ej . Additionally, in the Focussed retrieval strategy, Ei does not overlap
with Ej for any Ei and Ej . In the FetchBrowse retrieval strategy (Figure 1 (c)),
document Di is ranked higher than document Dj iff the score of Di is higher
than that of Dj , and within the same document Dd, element Edi is ranked higher
than element Edj iff the score of Edi is higher than that of Edj .

The three retrieval strategies of INEX were designed to evaluate XML-IR
systems and were not necessarily intended to be used in designing user interfaces.
From a practical point, we consider displaying search result elements aggregating
by an XML document , which is a scholartic article in the case of INEX, is an
effective display style for a user interface to have. The FetchBrowse retrieval
interface is of that style. We also consider that displaying the search result
elements in their document order (i.e. the occurrence order of start tags) is useful
especially for document-centric XML. Taking this consideration into account,
we have designed a new user interface, which we call the FetchHighlight retrieval
interface. In the FetchHighlight retrieval interface, XML documents are first
sorted in their relevance order, then relevant elements within the XML document



4 Toshiyuki Shimizu, Norimasa Terada, and Masatoshi Yoshikawa

are displayed in document order. Figure 1 (d) shows a conceptual image for the
FetchHighlight retrieval strategy. Elements are indented in accordance with their
depth in the XML tree.

In addition, to facilitate user browsing and specify the position of the relevant
document fragments easily, outline elements are output even if the score is 0,
which have particular structural information that the administrator defined,
together with relevant document fragments. Such outline elements in scholarly
articles are sections, subsections and so on.

Figure 2 shows an example of the FetchHighlight retrieval interface. This
example shows the search results for the keyword set “ontologies case study”,
which is one of the topics in INEX 2005. The anchor texts corresponding to doc-
ument fragments with a high score are indicated by using a larger font. Users
can easily recognize highly relevant document fragments even if the document
score is not so high by browsing search results using the FetchHighlight retrieval
interface (lower part in Figure 2). In addition, as the search results are ordered in
document order, users can recognize the parts in the documents with many high
relevant document fragments clustered. Users can browse the content of the doc-
ument fragment highlighted within the document by clicking the corresponding
anchor text (Figure 3).

We developed not only the FetchHighlight retrieval interface but also the
Thorough retrieval interface and the FetchBrowse retrieval interface, which are
the interfaces for the Thorough retrieval strategy and the FetchBrowse retrieval
strategy, respectively. We did not implement the Focussed retrieval strategy be-
cause users lose some possible benefits of XML-IR [7]. The naive interface for the
Focussed retrieval strategy is considered to be equivalent to the Thorough re-
trieval interface. However, the FetchHighlight retrieval interface can be regarded
as a more user-friendly interface for the Focussed retrieval strategy because users
can easily identify focussed elements using the FetchHighlight retrieval interface.

3 Implementation of Keyword Search on Relational
Databases

3.1 Conceptual Database Design

We show how to store XML documents and term weight information, which
is explained in Section 4, in a relational XML database system developed by
our group [4]. Note that the granule of search targets for an XML-IR system
are document fragments, which are elements or attributes. In this paper, we
regard only elements as a document fragment for the sake of simplicity. The
table schema of [4] is independent of the logical structure of XML documents.
Kikori-KS uses the following schema:

– Element (docID, elemID, pathID, start, end, label)
– Path (pathID, pathexp)
– Term (term, docID, elemID, tfipf)



Kikori-KS: A Keyword Search System for DL in XML 5

Fig. 2. FetchHighlight retrieval interface.

Fig. 3. Highlighted document fragment.



6 Toshiyuki Shimizu, Norimasa Terada, and Masatoshi Yoshikawa

The docID, elemID, and pathID are identifiers that identify a document, an
element, and a path, respectively. A pair of docID and elemID can uniquely
identify an element in a whole XML document set. The start and end are the
byte positions of the element and are used to clip the document fragment. The
value of the label attribute is a short text representing the element. In scholarly
articles, for example, section titles are used for the label values of the elements
corresponding to sections. The label value is used as an anchor text in the user
interface. The pathexp is the path expression from the root node and used when
we want to take the structural information into account. The term weight in the
element, whose detail is explained in Section 4, is stored in the tfipf attribute
in the Term table.

3.2 Schema Refinement

We refined the conceptual relational database schema by considering the re-
quirements of the user interfaces described in Section 2. The basic policy was to
reduce query processing time by storing data redundantly.

1. Materialized view
The search results in Kikori-KS need information across the Term, Element,
and Path tables. Increasing speed of query processing is possible by creating
a materialized view which is the result of joining these three tables.

2. Partition of Term table
The Term table has vast amounts of rows. By partitioning the Term table
with each term, we can access only the tables that a query really needs, and
therefore achieving efficient query processing.

For each term, a table that has the following schema is constructed. We can
identify the table using the table name with the term value. For term “xyz”, the
table name is Term xyz.

– Term xyz (docID, elemID, tfipf, start, end, label, pathexp)

In addition, in the case of the FetchHighlight retrieval strategy, we need out-
line elements. The system administrator predefines outline elements in such a
way as selecting path information. Although outline elements can be retrieved
dynamically during searches, we can process queries efficiently by selecting out-
line elements and constructing an Outline table in advance. We can also apply
join operations in advance to the Outline table.

– Outline (docID, elemID, start, end, label, pathexp)

3.3 Query Translation

The input keyword set is translated into an SQL statement, and the system then
calculates the score of each relevant element. The Kikori-KS system can auto-
matically translate keyword sets into SQL statements to enable each retrieval
strategy.



Kikori-KS: A Keyword Search System for DL in XML 7

For each term in the keyword set, the system retrieves the corresponding Term
table, then calculates the scores on the basis of the model described in Section
4. The FetchHighlight retrieval strategy and the FetchBrowse retrieval strategy
need document scores. We considered that a document score is equivalent to the
score of the root node in the document. In addition, the FetchHighlight retrieval
strategy needs outline elements. The system retrieves the outline elements from
the Outline table, then returns the union of the relevant elements and outline
elements.

In addition to searching by simple keyword sets, Kikori-KS supports term
restrictions by using mandatory term and negation. We can specify a mandatory
term by using a “+” sign preceding the term and a negation by using a “-”.

Kikori-KS appropriately arranges the results of SQL queries that perform the
retrieval strategy the user selected and constructs a corresponding user interface.

4 Ranking Model

We explain the ranking model and term weighting method used in Kikori-KS in
this section. The term weights are calculated in advance for fast query processing
during searches.

The search results of the XML-IR systems should be ranked with scores that
reflect relevance to the query. We used a vector space model, a model widely used
for calculating scores. The score this model produces is the degree of similarity
between the query vector and the document vector (element vector in the case
of XML-IR) represented in a term space. We can use the dot product of query
vector Q and element vector E for the degree of similarity.

Sim(Q, E) =
∑

t∈Q,E

weight(t, Q) ∗ weight(t, E) (1)

We can use the term frequency of t in Q as the weight of the term in query
(weight(t, Q)). As for weight(t, E), which is the weight of term t in element
E, tf-idf, which is the product of tf (term frequency) and idf (inverse document
frequency), is an effective weighting scheme for unstructured documents. For
structured documents, such as XML, several variants of tf-idf have been proposed
[8–10]. The specificity of a term is calculated within the elements with the same
Category in [9]. In the implementation of [9], Category is defined based on the
path information from the root node. We call this method ipf (inverse path
frequency) and use it in Kikori-KS. In addition, we adapted the method in [11]
to XML documents and used the following formula for weight(t, E).

weight(t, E) =
ntf

nel
∗ ipf (2)

ntf = 1 + ln(1 + ln(tf)) (3)

nel =
(

(1 − s) + s ∗ el

avgelp

)
∗ (1 + ln(avgelp)) (4)



8 Toshiyuki Shimizu, Norimasa Terada, and Masatoshi Yoshikawa

ipf = ln
Np + 1

efp
(5)

where ntf is the normalized term frequency (tf) of t, nel is the normalization
factor that reflects the element length of E, and ipf is the specificity of term t
within elements that share path p. Here, el is the number of terms in element
E, p is the path of E from the root node, avgelp is the average el of elements
that share path p, Np is the number of elements that share path p, efp is the
number of elements that term t occurs in the elements sharing path p, and s is
a constant parameter and is usually set to 0.2 [11].

5 Experiments

We used the XML documents provided by INEX [6]. INEX is also developing
topics, which are queries for XML document collection, and relevance assess-
ments. We used the INEX-1.9 document collection, which is about 700 MB.
INEX provides two types of queries: Content Only (CO) queries and Content
And Structure (CAS) queries. We used 40 CO queries of INEX 2005 in our
experiments. The experimental setup used is as follows: CPU: Intel Xeon 3.80
GHz (2 CPU), Memory: 4.0 GB, OS: Miracle Linux 3.0, and RDBMS: Oracle
10g Release1.

5.1 Effectiveness

We examined the precision of the search results using the Thorough retrieval
strategy and the FetchBrowse retrieval strategy of Kikori-KS. Note that although
the main focus of the Kikori-KS interface is the FetchHighlight retrieval interface,
the precision of the FetchHighlight retrieval strategy cannot be directly measured
using the INEX test collection. However, the precision of the FetchHighlight
retrieval strategy is considered to be equivalent to the FetchBrowse retrieval
strategy because the only difference between the strategies is the appearance of
the user interface.

Many research groups in INEX are evaluating the effectiveness of each XML
retrieval system. Although many metrics have been proposed and used for evalu-
ations, we used precision/recall graph because it seems to be general one. Figures
4 and 5 show the results of Kikori-KS with ones by other INEX participants.
The position of Kikori-KS is relatively high especially using the FetchBrowse
retrieval strategy (Figure 5) and so using the FetchHighlight retrieval strategy
as well.

5.2 Efficiency

We examined the processing time of SQLs translated from 40 CO queries and
measured the average time for the Thorough retrieval strategy, the FetchBrowse
retrieval strategy, and the FetchHighlight retrieval strategy. We retrieved only
the top 1,500 results as stipulated by INEX.



Kikori-KS: A Keyword Search System for DL in XML 9

 0

 0.1

 0.2

 0.3

 0.4

 0  0.5  1

P
re

c
is

io
n

Recall

Kikori-KS

Fig. 4. Precision/Recall of Thorough.

 0

 0.1

 0.2

 0.3

 0.4

 0  0.5  1

P
re

c
is

io
n

Recall

Kikori-KS

Fig. 5. Precision/Recall of FetchBrowse.

0

1000

2000

3000

4000

5000

6000

Thorough FetchBrowse FetchHighlight

P
ro

c
e

s
s
in

g
 T

im
e

 (
m

s
)

Fig. 6. Processing time.

Kikori-KS achieved a processing time of about 2.5 seconds for the Thorough
retrieval strategy or the FetchBrowse retrieval strategy and about 5.0 seconds
for the FetchHighlight retrieval strategy. We consider this an acceptable search
time.

An efficient top-k query processing method for XML-IR was proposed in [12].
The method’s main focus is CAS queries and whose target is increasing speed of
searches using the Thorough retrieval strategy. In the case of CAS queries, we can
use structural information to narrow down candidate results, and process faster
than CO queries. The processing time indicated in Figure 6 is the time when we
retrieved the top 1,500 results. The processing time of Kikori-KS is comparable
with the time of [12]. Kikori-KS can handle the FetchBrowse retrieval strategy
with a comparable time using the Thorough retrieval strategy.

The FetchHighlight retrieval strategy needs a union with the outline elements,
and the processing time is about as twice as that for the Thorough retrieval
strategy or the FetchBrowse retrieval strategy. If outline elements are not needed,
the processing time is equivalent to that of the FetchBrowse retrieval strategy.



10 Toshiyuki Shimizu, Norimasa Terada, and Masatoshi Yoshikawa

6 Conclusions

We introduced Kikori-KS, a system which we can use to search XML documents
by using a set of keywords. This system allows us to browse search results with a
user-friendly FetchHighlight retrieval interface. XML documents and their term
weight information were stored in a relational XML database system, and the
schema was refined for increasing speed of query processing. Using an INEX test
collection, we confirmed that Kikori-KS can handle a keyword set query in an
acceptable time and with relatively high precision.

Future work includes developing storage schema and weighting methods for
phrase searches and introducing content and structure (CAS) searches.

References

1. W3C: XQuery 1.0 and XPath 2.0 Full-Text (2006)
http://www.w3.org/TR/xquery-full-text/.

2. W3C: XML Path Language (XPath) Version 1.0 (1999)
http://www.w3.org/TR/xpath.

3. W3C: XQuery 1.0: An XML Query Language (2006)
http://www.w3.org/TR/xquery/.

4. Yoshikawa, M., Amagasa, T., Shimura, T., Uemura, S.: XRel: a path-based ap-
proach to storage and retrieval of XML documents using relational databases.
ACM Transactions on Internet Technology 1 (2001) 110–141

5. Fujimoto, K., Shimizu, T., Terada, N., Hatano, K., Suzuki, Y., Amagasa, T., Kinu-
tani, H., Yoshikawa, M.: Implementation of a high-speed and high-precision XML
information retrieval system on relational databases. In: Advances in XML In-
formation Retrieval and Evaluation. Volume 3977 of Lecture Notes in Computer
Science., Springer-Verlag (2006) 254–267

6. INEX: INitiative for the Evaluation of XML Retrieval (2005)
http://inex.is.informatik.uni-duisburg.de/2005/.

7. Clarke, C.L.A.: Controlling overlap in content-oriented XML retrieval. In: Pro-
ceedings of the 28th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, Salvador, Brazil (2005) 314–321

8. Cohen, S., Mamou, J., Kanza, Y., Sagiv, Y.: XSEarch: A semantic search engine
for XML. In: Proceedings of the 29th International Conference on Very Large Data
Bases, Berlin, Germany (2003) 45–56

9. Grabs, T., Schek, H.J.: ETH Zürich at INEX: Flexible information retrieval from
XML with PowerDB-XML. In: Proceedings of the First Workshop of the INitiative
for the Evaluation of XML Retrieval, Schloss Dagstuhl, Germany (2002) 141–148

10. Amer-Yahia, S., Curtmola, E., Deutsch, A.: Flexible and efficient XML search
with complex full-text predicates. In: Proceedings of the 2006 ACM SIGMOD
International Conference on Management of Data, Chicago, USA (2006) 575–586

11. Liu, F., Yu, C.T., Meng, W., Chowdhury, A.: Effective keyword search in relational
databases. In: Proceedings of the 2006 ACM SIGMOD International Conference
on Management of Data, Chicago, USA (2006) 563–574

12. Theobald, M., Schenkel, R., Weikum, G.: An efficient and versatile query engine
for TopX search. In: Proceedings of the 31st International Conference on Very
Large Data Bases, Trondheim, Norway (2005) 625–636



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
    /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


