Dynamic Focused Retrieval of XML Documents
and Its Evaluation

Toshiyuki Shimizu
Graduate School of Informatics
Kyoto University

shimizu@soc.i.kyoto-u.ac.jp

ABSTRACT

XML information retrieval (XML-IR) systems search for rel-
evant elements in XML documents for given queries. Though
XML-IR systems must handle nesting elements, the output
of existing systems remains single ranked list. Ranked lists
of all relevant elements may contain redundant contents by
nestings, whereas single list of focused elements may lose
possible benefit of XML-IR. We introduce the concepts of
benefit and effort and propose to retrieve focused elements
dynamically. The system flexibly retrieves non-overlapping
elements which have larger benefit within the effort accept-
able to users. To evaluate XML-IR systems with dynamic
focused retrieval, we decided to use an upper bound of the
benefit that is obtained by the system because we found no
unique algorithm can be the optimal and practical solution
for the problem. The performance of the system can be
observed compared to the upper bound.

1. INTRODUCTION

To retrieve information about a topic from a large quan-
tity of XML documents, a keyword search can be used to
retrieve the document fragments that are relevant to the
topic. XML information retrieval (XML-IR) systems gen-
erally use elements as basic search units. For example, in
the case of academic articles marked up in XML, XML-IR
systems use elements corresponding to sections, subsections,
and paragraphs to construct search results.

One of the advantages of XML-IR systems is that users
need to read only small portions of result documents, and
XML-IR systems should retrieve higher relevant portions
before they retrieve lower relevant portions. A critical focus
of XML-IR is how to handle nesting elements. Some result
elements may nest other results; for example, a paragraph
element may be highly relevant to a query, while the section
element that includes the paragraph is moderately relevant
to the query.

INEX 2005 [5] defines three element retrieval strategies
for evaluating the effectiveness of XML-IR systems. Sys-

Masatoshi Yoshikawa
Graduate School of Informatics
Kyoto University

yoshikawa@i.kyoto-u.ac.jp

tem using the Thorough strategy simply retrieve relevant
elements from all elements and rank them in order of rele-
vance. Elements retrieved using the Thorough strategy may
overlap due to nestings. System that use the Focused strat-
egy retrieve only focused elements by selecting the element
with the highest score in a path and removing overlapping
elements. Though the use of the Focused strategy avoids re-
dundancy, it excludes non-focused elements from the results,
which means that some of the possible benefits of XML-IR
are lost [1] because it retrieves fixed ranked list of focused
elements. Systems using the Fetch and browse strategy first
identify relevant documents (fetching phase) and then iden-
tify relevant elements within a fetched document (browsing
phase).

In INEX 2006 [6], Relevant in context task and Best in
context task were also introduced. Relevant in context is a
similar strategy to Fetch and browse except that it retrieves
only focused elements according to their original document
order for each article. Best in context searches for the Best
Entry Point (BEP) for starting to read an article and re-
trieves only one best starting point per article. Retriev-
ing elements grouped per article as in Fetch and browse or
Relevant in context is another important point to consider,
however it is not focus of this paper.

The retrieval strategies in INEX assume that XML-IR sys-
tems return a fixed ranked list of elements. Such retrieval
strategies are important for system evaluation, however we
considered that the style of single ranked list suffer from
handling nesting elements. As we mentioned, the results of
Thorough may contain redundant contents by nesting ele-
ments, or the Focused never retrieves ancestor elements of
elements that have already been retrieved and lacks flexibil-
ity.

To handle nesting in XML-IR search results, Clarke [1]
proposed controlling overlapping by re-ranking the descen-
dant and ancestor elements of the reported element. How-
ever the retrieval style is yet fixed ranked list of elements.

To overcome this problem, we propose dynamic focused
retrieval. We introduced the concepts of benefit, which is the
amount of gain obtained by reading the element, and effort,
which is the cost for browsing search results [10]. We sup-
posed that the user interactively decide the amount of effort
that can be spent to browse search results, and the system
dynamically retrieve relevant elements within the specified
effort. The system retrieves elements that provide larger
benefit and to obtain more benefit from retrieved elements,
nesting elements are removed from the search results since it
is considered that there is no increase in benefit from reading

the repeated content. By using this dynamic retrieval style,
the systems can retrieve non-overlapping elements flexibly.

The following situation can be considered as one of the
actual usage scenarios of our XML-IR systems. A user first
specifies a threshold of effort and the system retrieve focused
elements for the specified effort. Then, in response to the
retrieval result from the system, user interactively adjust
the threshold of effort. If s/he thinks the returned set of
subdocuments is too much (or too small), s/he will increase
(or decrease) the threshold. For any threshold value of ef-
fort, the system always retrieves focused non-overlapping
elements depending on the value.

We considered that effort consists of reading effort and
switching effort. The reading effort is the effort for reading
the contents of the result elements, and the switching effort
is the effort for switch result items.

By using reading effort, we can directly handle element
size. The elements retrieved by XML-IR systems vary greatly
in size. A root element that corresponds to the whole doc-
ument will be large, while other elements may be much
smaller. Therefore, the cost of reading the content of a re-
trieved element is not known beforehand. In general, users
of XML-IR systems browse search results from top ranked
element to lower ranked elements. Therefore, fast retrieval
of high ranked elements is important and there are some
researches on top-k search of XML-IR [12, 3]. However, to-
tal output size of top-k elements is uncontrollable by simply
giving an integer k. We considered using reading effort in-
stead of an integer k is better alternative to control the total
output size.

The systems can avoid long list of short elements by con-
sidering switching effort. In this paper, the discussions mainly
based on only reading effort excluding switching effort, how-
ever we can extend the discussions by considering that we
need extra effort, that is switching effort, for browsing each
element in result lists.

We formalized the problem of maximizing benefit for a
given effort when the system is given benefit and reading
effort for each element, and defined the concept of search
result continuity, which we consider a critical property for
a practical system. Because systems based on our scheme
retrieve elements flexibly according to the amount of effort,
the contents of the elements retrieved as the optimal solution
for the small amount of effort may not be included in the
contents of the elements retrieved as the optimal solution
for the larger effort. We believe a practical system should
avoid this type of situation.

We found that the problem of finding an optimal solution
for the formalized problem was an variant of the knapsack
problem and was NP-hard. We also found that this optimal
solution violated search result continuity, and therefore pro-
posed greedy algorithms for the formalized problem. Fur-
thermore, we improved the algorithm that we proposed in
[10], and propose a recursive greedy retrieval algorithm.

We need to devise evaluation measure that is not based
on the number of relevant results such as traditional Preci-
sion and Recall to evaluate XML-IR systems with dynamic
focused retrieval, because such systems are based on benefit
and effort and disregard the number of retrieved elements.

We assumed that the reading effort could be easily cal-
culated using the length of the corresponding element, and
the switching effort is a constant value in this paper. Thus,
the performance of a system based on our scheme depends

on the benefit calculated by the system. To evaluate a flexi-
ble retrieval system in which the result elements change de-
pending on the specified effort, we assumed we could use the
actual benefit of each element. Using actual benefit means
that the optimal solution for the formalized problem gives a
theoretical upper bound of benefit that the system can pro-
vide. We considered that the proportion of the total amount
of actual benefit that the system provided compared to the
upper bound changing the amount of specified effort could
be used as a base for evaluation measures. However, as the
problem of finding the optimal solution is NP-hard, we de-
cided to use the upper bound of the benefit provided by the
optimal solution as the target for comparison. We confirmed
the effectiveness of the upper bound and the quality of the
upper bound was sufficient for most queries of INEX 2005.

2. BENEFIT AND EFFORT

Our proposals on retrieval and evaluation for XML-IR are
based on the concepts of benefit and effort. We basically
assumed the following three points. 1) XML-IR systems
retrieve elements, that is, partial text fragments in elements
or aggregations of multiple elements can not be answers,
and 2) users read full contents of retrieved elements, that
is, when a element is retrieved and browsed by a user, the
user read all descendant contents together. 3) Users do not
read only a partial content of retrieved elements, and users
read the content of the retrieved element to the end once
s/he start reading. We believe these assumptions are also
adopted in element retrieval of INEX [2].

2.1 Benefit

We considered users obtain benefit from relevant content
to the query the user input. For a given query, the bene-
fit of an element is the amount of gain obtained by reading
the element. In this paper, we follow the assumption of
traditional IR and XML-IR methods for the sake of sim-
plicity. The target document set describe unique content,
that is they do not repeat the same or similar content more
than once. This assumption is adopted by traditional IR
and XML-IR methods, which may retrieve redundant but
different documents that describe the same or similar con-
tent. We can also observe the Precision / Recall measure
does not consider such document similarity.

Under this assumption, basically, the benefit of an element
can be considered to be the sum of the benefit of the child
elements. However, when all the child elements are read
together, the contents of the child elements may complement
each other; hence the benefit of the parent element may be
larger than sum of the benefit of the child elements.

In this paper, we assumed that the benefit of an element
is greater than or equal to the sum of the benefit of its child
elements.

2.2 Effort

We introduced two types of effort to model the actual
user behavior. One is the reading effort which users spend
in browsing the content of the search result, and the other is
the switching effort which users spend in browsing the result
items.

2.2.1 Reading Effort

We considered users spend reading effort when they browse
the content of search results. The reading effort of an ele-

ment is the cost spent in reading the content of the element.
Note that reading effort does not depend on the query and
can be calculated based on the element itself. Basically, the
reading effort of an element can be considered as the sum of
the reading effort of the child elements. However, when all
the elements are read together, users may be continuously
reading within the same context. Hence, the reading effort
of the parent element may be smaller than the sum of the
reading effort of the child elements.

In this paper, we assumed that the reading effort of an
element is less than or equal to the sum of the reading effort
of its child elements.

2.2.2 Switching Effort

We counsidered users spend switching effort when they fin-
ished reading one result item and continue to read the next
result item.

Intuitively, users need more effort for a result items that
consist of many short paragraph elements than a result items
that consist of only one section element which is the parent
element of the paragraph elements and describes the same
content in fact.

If we consider strictly, the switching effort is the value
that depend on the relationship between the switched two
result items. However, we handle the switching effort as a
fixed constant value in this paper for the sake of simplicity.

2.3 b/e Graph

The XML-IR systems that we propose calculate the ben-
efit of elements in the XML document set for a given query,
and retrieve result elements. We assumed that users would
specify the threshold amount c for effort, and that the sys-
tem would retrieve elements that had larger benefit within
the specified effort.

We assumed that reading the same content repeatedly
would not increase the benefit. If a search result contains
nesting elements, the system keeps only the eldest ancestor
element of the nesting elements, and removes all the other
elements of the nesting elements, because the amount of
benefit provided remains the same. Therefore, the search
results do not contain nesting elements.

Figure 1 shows an example of benefit and reading effort
calculated by a system for a query. In Figure 1, the tree
structure of an XML document is represented, and benefit
and reading effort are shown in the form of benefit/reading
effort adjacent to the element. For the sake of simplicity, we
did not assume any concrete formula for calculating benefit
and reading effort in Figure 1.

We assumed that we need to read the whole content of
the element to obtain benefit from the element. That is,
we can not obtain partial benefit for partial reading effort.
When a system calculates benefit and reading effort for a
query as in Figure 1 and does not take switching effort into
consideration, if a user specifies a threshold of effort to 15,
the element set that maximizes benefit is {es, e2}, whereas
if 20 is specified, the element set that maximizes benefit is
{63, 67}.

We considered system behaviors can be expressed in the
form of a graph, which we call a benefit/effort graph (b/e
graph, for short). The behavior of a retrieval algorithm is
expressed by plotting the total amount of benefit obtained
when the threshold c for effort is changed. Figure 3 shows
system behaviors of three algorithms in Figure 2. Algo-

@50

article

1%8 (e5) %3
sec sec

s @5 @
P P P

Figure 1: An example of calculated benefit and reading ef-
fort.

Al A2 Al

{o} [0,10) {o} 0,5 {¢} [0,10)

{es} [10,20) {eo} [5,15) {es} [10,25)

{63, 67} [20, 38) {62, 63} [15, 25) {63, 67} [25, 43)

{e1,er} [38,50) {e2,es,er} [25,38) {er,er} [43,50)

{eo} [50,00) {ei,er} [38,50) {eo} [50,00)
{eo} [50, o0)

Figure 2: Examples of system behaviors.

w
o

—

N
[$,]

N
o

Sum of benefit
>

o

o

0 10 20 30 40 50 60
threshold of effort

Figure 3: A1, A2 and A1’ on b/e graph.

rithms Al and A2 only consider reading effort as effort,
whereas A1’ consider both reading effort and switching ef-
fort. The value of switching effort in this example is 5. For
example, algorithm Al retrieves {¢} when 0 < ¢ < 10, {es}
when 10 < ¢ < 20, and so on.

3. RETRIEVAL METHOD

We describe retrieval algorithms based on benefit and ef-
fort. First, we handle only reading effort as effort, and then
introduce switching effort in Section 3.4. We formalize the
problem in Section 3.1, and describe retrieval algorithms in
Section 3.2 and 3.3. Finally, we extend the discussion and
describe retrieval algorithms considering switching effort in
Section 3.4.

3.1 Formalization of the Problem

The problem of maximizing benefit for a given effort is
a variant of a knapsack problem [7] that has restriction of
nestings. This problem (P) is formalized as follows.

n
maximize z(z) = Zbixi (1)
i=1
subject to Zrmi <c (2)
i=1
(P)
zi € {0,1} 3)
T + 2y + o+ g, <1 (4)
for any e, €jy, 55 €jpn
which are elements
on a path from root to leaf

where b; is the benefit of the element e;, r; is the reading
effort of e;, and c is the threshold value of effort input by
the user. We can state that e; is (not) contained in the
search result by setting z; = 1 (x; = 0, respectively). The
condition (4) shows that the search results do not contain
nesting elements.

This problem (P) is considered to be an extension of the
normal knapsack problem as it can be reduced to a normal
knapsack problem if we handle XML documents that each
contains only one element. We can say that the problem (P)
is NP-hard since the normal knapsack problem is already
NP-hard.

The system that maximizes benefit in the situation shown
in Figure 1 retrieves {es, ez} when ¢ = 15, and {es, e7} when
¢ = 20. This means that the system does not output the
content of es when ¢ = 20, though the content of es is output
when ¢ = 15. Therefore, when a user specifies a threshold of
effort to 20, s/he can not obtain information from ez though
s/he pays more effort than the case when s/he specifies the
threshold of effort to 15 and obtains information from e>. To
avoid such situations, we consider it important that systems
have the property of search result continuity. Search result
continuity is defined as follows.

Definition 1. Search result continuity

When we describe the result element set for threshold ¢ of
effort as E°={ef, €5, ..., ey}, and the result element set for
the threshold ¢’ as Ec,:{efl, egl, ceey ef,;}, the algorithm has
the property of search result continuity if the following holds
for any ¢ and ¢’. The function ancestor-or-self (e) returns
an element set that consists of ancestor elements of e and e
itself.

Ifc<c, thenVeec E° Je € EY st. ¢ € ancestor-or-
self (e) o

In other words, the content of an element set for effort ¢
must be contained in the content of the element set for effort
¢ if we increase the threshold value for effort from c to ¢'.
Note that the element e’ is unique to all e from Equation
3 and 4 in the context of problem (P). We consider that
practical systems must provide search result continuity, as
do algorithms A1, A2 and A1’ in Section 2.3.

When we consider retrieval algorithms that provide search
result continuity, there is no single algorithm that can pro-
vide benefit greater than or equal to all the other algorithms
for any threshold value of effort in general. In the case of the

situation in Figure 1, an algorithm such as A2, which can
provide maximum benefit by retrieving {es,e2} when ¢ = 15,
can not retrieve {es, er} and provide maximum benefit when
c=20.

3.2 Simple Greedy Retrieval Algorithm

As the problem (P) is NP-hard and the optimal solution
violates search result continuity, we considered to solve the
problem by greedy retrieving elements that we can obtain
benefit efficiently.

We considered the Algorithm 1 to provide a greedy solu-
tion for (P). The inputs for the algorithm are list;, and c.
listin is the element list that holds b;/r; > biy1/ri4+1 for all
1, and if b; /r; is equal to bi11 /741, the list holds 7; < rij1.
c is the threshold for effort. The outputs of the algorithm
are the sum of obtained benefit z and = {x1,x2, ..., x» } for
Z.

When a element is retrieved, by adjusting the benefit and
reading effort values of the ancestor elements, and retriev-
ing the element that has the greatest b;/r; in that time, the
system can retrieve elements efficiently. We call this algo-
rithm a simple greedy retrieval algorithm. The output of
this algorithm holds the conditions of (P) and search result
continuity.

As an example, we describe a case in which a user specifies
a threshold of reading effort ¢ to 40, and benefit and read-
ing effort are calculated as in Figure 1. In this case, list;, is
{63(b3/1"3 = 9/10 = 0.9), 67(0.8), 61(0.64), 60(0.56), 62(0.4),
e5(0.35), €4(0.33)}. First, es is processed and z={eo, e1, €2,
..., e7} becomes {0,0,0,1,0,0,0,0} and z becomes 9. At the
same time, the benefit and reading effort of the ancestor el-
ements e; and eg are adjusted. For ei, b; is decreased to
9 and r; is decreased to 18. For eg, by is decreased to 19
and 7o is decreased to 40. The benefit (reading effort) for
the ancestor elements after these adjustments is obtained (is
required), when the algorithm had a chance to subsequently
process the ancestor elements later. The system reflects
these adjustments and re-ranks the elements in list;,. In
this case, listi, becomes {e7(0.8), e1(0.5), €0(0.48), e2(0.4),
e5(0.35), €4(0.33)}. In addition, ¢ becomes 40 — 10 = 30.
Then, e7 is processed and @ becomes {0,0,0,1,0,0,0,1}, 2z
becomes 9+8 = 17, listin becomes {e1(9/18 = 0.5), e2(0.4),
€0(0.37), €4(0.33), e5(0)}, and ¢ becomes 30 — 10 = 20.
Next, e; is processed and the system sets zz3 = 0 because
e3 is the descendant of e;. In addition, e2 and es are re-
moved from listi,. @ becomes {0,1,0,0,0,0,0,1}, z be-
comes 1749 = 26, list;n becomes {eg(2/12 ~ 0.17), e5(0)},
and ¢ becomes 20 — 18 = 2. Next, eo is processed, how-
ever we can not retrieve eg within the specified effort, and
the processing terminates . The outputs are z = 26 and
x={0,1,0,0,0,0,0,1}.

The line labeled “simple” in Figure 4 shows the system
behavior of a system using the simple greedy retrieval algo-
rithm when the system calculates benefit for a query as in
Figure 1.

3.3 Recursive Greedy Retrieval Algorithm

When the sum of the reading effort of elements retrieved
using the simple greedy retrieval algorithm is less than the
threshold value ¢, it is considered that the amount of benefit
is increased by retrieving elements that have not yet been
obtained using the remainder of effort.

However, it is important that systems have the property

Algorithm 1 Simple greedy retrieval algorithm

Algorithm 2 Recursive greedy retrieval algorithm

Input: listin, ¢
Output: z,
z=0
while ((e; = top(listin))! = null) do
remove ¢; from list;n
it (r; > ¢) then
break
end if
adjust(e;)
vi=1,2+=bi,c— =1
9: end while
10: return z, ©

12: function adjust(e;) {
13: for (eq € e;.descendants) do

14: Lrd = 0

15: remove eq from list;,
16: end for

17: for (eq € e;.ancestors) do
18: ba— = bi, Ta— = T4

19: rerank eq in list;n

20: end for

21: }

of search result continuity. Therefore, it is not appropriate
to obtain any elements for the remainder of effort. To satisfy
search result continuity, the system needs to retrieve descen-
dant elements of the element that is to be retrieved next. An
algorithm that improves on the simple greedy retrieval algo-
rithm by retrieving more elements for the remainder of effort
is shown in Algorithm 2. We call this algorithm a recursive
greedy retrieval algorithm.

In the case of the running example, when a user sets
¢ = 30, the outputs of the simple greedy retrieval algo-
rithm are z = 17 and £={0,0,0,1,0,0,0,1}. However, a
system using the recursive greedy retrieval algorithm can
retrieve es which is a descendant of e; after e7; the outputs
of the recursive greedy retrieval algorithm are z = 19 and
+={0,0,1,1,0,0,0,1}.

The line labeled “recursive” in Figure 4 shows the system
behavior of a system using the recursive greedy retrieval
algorithm when the system calculates benefit for a query as
in Figure 1.

Theorem 1. Superiority of recursive greedy retrieval al-
gorithm

The sum of benefit from elements retrieved by the recur-
sive greedy retrieval algorithm is greater than or equal to
that provided by the simple greedy retrieval algorithm for
any threshold value of effort.

Proof omitted as trivial. We should therefore use the re-
cursive greedy retrieval algorithm in the implementation of
systems.

3.4 Consideration for Switching Effort

If we consider switching effort, we need to change the
condition 2 in (P) to the following.

n

Z(ri +s)zi—s<c (5)

i=1

Input: listin, ¢

Output: z,

1: z=0

2: while ((e; = top(listin))! = null) do
3: if (Iretrieve(e;)) then

4 break
5 end if

6: end while
7: return z, T
8

9: function retrieve(e;) {
10: remove e; from list;n
11: if (r; > ¢) then

12: retrieveDescendants(e;)
13: return false
14: end if

15: adjust(e;)

16: ;=1 2z4+ =b;,c— =1r;
17: return true

18: }

20: function retrieveDescendants(e;) {
21: em = top ranked element that is descendant of e; and

Tm =0
22: if (em == null) then
23: return
24: endif
25: if (retrieve(em)) then
26: retrieveDescendants(e;)
27: endif
28: }
30
—
25
20
i ——simple

----- recursive

-
o

Sum of benefit
>

o

o

0 10 20 30 40 50 60
threshold of effort

Figure 4: System behaviors of each algorithm on b/e graph.

where s is the switching effort.

We can extend retrieval algorithms in Section 3.2 and
Section 3.3 by considering that we must spend additional
switching effort to retrieve each element and c is also incre-
mented by s.

We show the recursive greedy retrieval algorithm consid-
ering switching effort in Algorithm 3. The effort of each ele-
ment and c is incremented by s. If we drop the retrieve Des-
cendants(e;) function, the algorithm can be consider as sim-
ple greedy retrieval algorithm.

Algorithm 3 Retrieval algorithm considering switching effort

Input: listin, c, s
Output: z,
z=0
ct+=s
: for (e; € listin) do
rit =35
end for
: etop = top(listin)
o if (Iretrieve(etop)) then
return z, ©
9: end if
10: rerank listin
11: while ((e; = top(listin))! = null) do
12: if (lretrieve(e;)) then
13: break
14: end if
15: end while
16: return z, ©

S B A

4. EVALUATION METRICS

We propose evaluation metrics based on the system be-
havior shown in the b/e graph. In order to evaluate systems
based on benefit and effort, we supposed that the actual ben-
efit for each element is available. Though systems calculate
benefit for each element and retrieve results using recursive
greedy retrieval algorithm, we must use the actual benefit by
retrieved results for system evaluation not the benefit value
expected by the system. Note that as Figure 3 or Figure
4 is drawn using the benefit values calculated by a system,
the actual benefit obtained by the systems may differ from
the values in these figures.

We decided to use an upper bound of the actual benefit
that is obtained by systems. The performance of the system
can be observed compared to the upper bound. We do not
consider switching effort distinctly in this section, as we can
consider that we need extra switching effort for browsing
each element when the we want to take the switching effort
into consideration. In this section, first we discuss how to
calculate actual benefit and effort in Section 4.1, then de-
scribe why and how to calculate and use the upper bound in
Section 4.2 and Section 4.3. Finally we compare our metrics
with INEX metrics in Section 4.4.

4.1 fI_—Iow to Calculate Actual Benefit and Ef-
ort

INEX are manually developing relevance assessments for
XML-IR. The relevance assessments of INEX 2005 consists
of two parts, Exhaustivity (ex) and Specificity (sp) *. Ex-
haustivity is the extent to which the element discusses the
topic of request, and it has three levels; Highly exhaustive
(HE), Partially exhaustive (PE), and Not exhaustive (NE)
2. We can convert HE, PE, and NE to numeric as 1, 0.5, 0,
respectively. Specificity is the extent to which the element
focuses on the topic of request, and it is calculated by divid-
ing rsize, which is the length of the content relevant to the
topic, by size, which is the whole length of the element.

We describe ex, sp, rsize, and size of element e; as ex(e;),

!The assessments of INEX 2006 or later only use Specificity.

2Too Small (TS) is introduced for small elements, however
we regard TS is equal to NE.

sp(es), rsize(e;), size(e;). We considered calculating actual
benefit and reading effort from assessments of INEX 2005.
For example, we can use following equations.

bi = ex(e;) *x rsize(e;) (6)
r; = size(e;) (7)

We can use only rsize for calculating benefit when the as-
sessments of INEX 2006 or later which include only Speci-
ficity are used.

b; = rsize(e;) (8)

We assumed the switching effort is the fixed value in this
paper. We need to use reasonable value to integrate with
reading effort. Though the switching effort should be care-
fully investigated through user studies, we supposed that
the reading effort corresponding to small but meaningful
element size such as average size of paragraph elements is
likely to be used as a starting value of switching effort.

4.2 Upper Bound of Benefit for Given Effort

When we consider the problem (P) in Section 3.1 and
use actual benefit, we can calculate the maximum of actual
benefit value for a certain ¢ value by solving (P). If an algo-
rithm could provide maximum benefit for all of the ¢ values,
we could use the benefit values of the algorithm as a basis
for system evaluation. However, for this problem, there is
no such algorithm because we must also consider search re-
sult continuity. We therefore decided to calculate the upper
bound of the amount of benefit and use it as the basis for
evaluating systems. The optimal solution of (P), which does
not consider the search result continuity, can be an upper
bound. However, this problem (P) is NP-hard and difficult
to solve. Therefore, we decided to calculate an upper bound
of (P). The upper bound of (P) is greater than or equal to
that of the problem considering search result continuity.

Theorem 2. Upper bound of (P)

The optimal value of the continuous problem (P’) of (P)
that relaxes the condition (3) to 0 < x; < 1 provides the
upper bound of (P).

Proof. The value that can be obtained in (P) can also
be obtained in (P’) because the problem (P’) relaxes the
condition in (P). The range of values in (P) is included in
the range of values in (P’). Therefore, the optimal value of
(P?) provides an upper bound of (P). O

We considered the Algorithm 4 based on the Algorithm 1
to provide the optimal solution for (P’). If the system can
not retrieve whole e; (Line 4), it achieves optimal value by
retrieving the partial amount that can be retrieved. As an
example of calculating optimal value of (P’), we consider
the case when a user specifies the threshold of effort ¢ to
40, and benefit and reading effort are calculated like Fig-
ure 1, which is the same situation when we consider simple
greedy retrieval algorithm. The processing basically follows
the same steps except that the last step concerning eg is
skipped. As the final step, system retrieves partial amount
of ep using the remaining effort 2. zo is set to 2/12 ~ 0.17
and z1 and x7 are set to 1 — 2/12 ~ 0.83. x becomes
{0.17,0.83,0,0,0,0,0,0.83}, 2’ becomes 26+ 2x0.17 ~ 26.3,
and then breaks.

When we pick up a non-overlapping element set {ey, , €x,,
.osy €k, }, €ach of which is the descendant of the element e,

Algorithm 4 Optimal solution for (P’)

Input: listin, c

Output: 2/, x

1: 2 =0

2: while ((e; = top(listin))! = null) do
3: remove e; from listn

4: if (r; > ¢) then

5: xi = c¢/ri

6: for (eq € e;.descendants) do
7 if (xg ==1) then

8: Tqg = 1- T

9: end if
10: end for
11: 24 =b; xx;
12: break
13: endif

14: adjust(e;)

15 x;=1,2+=b,c—=mr;
16: end while

17: return 2/, x

the conditions in (P’) hold if we set z, = « and zp, =
1 —a (1 <4< m). In this situation, the sum of benefit is
calculated as follows.

bT*aJri(bki*(lfa))

i=1
= b,«*a—i—ibki _i(bki * Q)
i=1 i=1

= - Sob)eat b, ©)
i=1 i=1

Similarly, the sum of reading effort is calculated by replacing
b; by r; in Equation 9. That is, setting x, = o and z, =
1 —a(l <i<m)is the same as setting =z, = a and zx, =
1 (1 <4 <m) if we assume a virtual element e, with benefit
of b, — 37" | by, and reading effort of r — 37" ;.

If the system can retrieve whole e;, that is, it can set
x; = 1, setting x4 = a > 0 for descendant element eq of
e; is contrary to the optimal solution because the benefit
obtained becomes b;*(1—a)+bg*a and bi*x(1—a)+bg*xa < b;
holds as b; is greater than or equal to bg. When the system
retrieves descendant elements of e; before retrieving e;, the
situation is considered to be x, = 1 and xr, = 1 when we
assume the virtual element e,, and therefore x, = 1 and
xk, = 0, in fact.

4.3 Comparison with Upper Bound

The upper bound is represented in the b/e graph as a
linear interpolation line of the plots when elements are re-
trieved by a simple greedy retrieval algorithm. A system
using the simple greedy retrieval algorithm can obtain max-
imum benefit at such points.

For system evaluation, we need the actual benefit for each
element. Note that this actual benefit can not be used in
system implementation. Implementers of XML-IR systems
can develop better systems by guessing the benefit of each
element as closely as possible to the actual benefit. We
assumed that we could use a common reading effort value
for various systems because this value does not depend on

@ 50

article

)"

S€C

€73
sec

Figure 5: Actual benefit and reading effort.

< 40
g 35
¥ 30
<=
—= 25 / —upper bound
g 20 — i ideal
E / quasi idea
< L e e S system

10
g
= 5
@n

0 : : : ; .

0 10 20 30 40 50 60
threshold of effort
Figure 6: b/e graph for evaluation.
the query.

To evaluate systems based on benefit and effort, we can
compare the behavior of an implemented system with the be-
havior of the upper bound on a b/e graph. If we implement
a system that can calculate benefit values for each element
that are the same value as the actual benefit, a system using
the recursive greedy retrieval algorithm can provide benefit
that is very close to the upper bound. We call such a system
a quasi ideal system.

As an example, we explain the case in which the system
calculates benefit and reading effort as in Figure 1, how-
ever the actual benefit and reading effort are those shown
in Figure 5. In this case, using the recursive greedy rank-
ing algorithm, with a threshold value of effort 40, the sys-
tem can obtain 20 benefit by ={0,0,1,1,0,0,0, 1}, however
the upper bound of benefit that can be obtained is 33 by
x={0,0,0,1,1,0,1,0}. Figure 6 shows a b/e graph for the
running example. In Figure 6, ‘upper bound’ is for the up-
per bound and ‘system’ is for the system to be evaluated. If
the system calculates benefit identical to the actual benefit,
the behavior of the system is the line labeled ‘quasi ideal’.
The b/e graph enables us to intuitively understand the per-
formance of the system in relation to the upper bound. By
using the upper bound for comparison target, we can eval-
uate systems absolutely.

To evaluate XML-IR systems, the metrics based on XCG
is used in INEX 2005 [4]. By considering the effectiveness

of the implemented systems in relation to the upper bound,
we can apply this concept to our case. For example, we can
introduce iMArep (interpolated Mean Average reading effort
precision), which is calculated based on a b/e graph using
the similar concept of iMAep (interpolated Mean Average
effort precision) [4].

We calculated iArep values for quasi ideal system using
INEX 2005 test collection. We used calculation formula
for actual benefit and reading effort in Section 4.1 and dis-
regarded switching effort. We obtained b/e graphs up to
50,000 effort, which means 50,000 characters that is corre-
sponding to about the length of one article of INEX. Most
of the iArep values for quasi ideal system were greater than
0.9, indicating that the quality of the upper bound was good.
The iMArep value was 0.90 for all 29 Topics and 0.93 when
we excluded Topics 209, 217, and 239 whose iArep value
was relatively low because the good results tended to be
large elements for such topics.

4.4 Metrics of INEX

Though the target of our metrics and that of INEX is dif-
fer, our evaluation metrics is motivated by that of INEX.
Our metrics is for dynamic focused retrieval, whereas met-
rics of INEX is for single ranked list.

Though the evaluation metrics for XML-IR systems is
still a task with several open issues, the metrics based on
eXtended Cumulated Gain (XCG) is used in INEX 2005
[4]- System-oriented ep/gr (effort-precision/gain-recall) and
user-oriented nxCG (normalized extended Cumulated Gain)
measures are used by considering the relative effectiveness
for the ideal system.

In the context of XCG based measures, effort is measured
in terms of the number of visited ranks, whereas our reading
effort is measured in terms of element length. In addition,
such ideal system in XCG does not exist for the dynamic
focused retrieval, and we decided to use the upper bound.

In INEX 2007, evaluation metrics called HiXEval based
on relevant text length is used [8, 9]. The HiXEval metrics is
based on the assumption that a system which retrieves ele-
ments that contain as much relevant text as possible, and as
little irrelevant text as possible is preferred. In the HiXEval
metrics, the Precision is measured by the length of retrieved
relevant text compared to the total length of retrieved text,
and the Recall is measured by the length of retrieved rele-
vant text compared to the total length of relevant text.

If we regard element size as reading effort and relevant
text size as benefit, the concept of HiXEval is similar to
our metrics. In fact, element size can be seen as the factor
of reading effort and relevant text size as that of benefit
as in Section 4.1. However HiXEval does not consider ideal
system as in XCG. This means that though HiXEval metrics
can evaluate systems relatively, it can not evaluate systems
absolutely. If the value obtained using HiXEval metrics is
low, we can not say the system is ineffective, because the
value may be low even for an ideal system. To evaluate
systems absolutely, we need an ideal system for comparison.
In our scheme, we used the upper bound of the optimal
solution as the ideal value for comparison

5. CONCLUSIONS

We introduced the concepts of benefit and effort for XML-
IR systems, and proposed a retrieval algorithm and evalu-
ation metrics based on them. We examined situations in

which users of XML-IR systems specify a threshold for effort
and the system flexibly retrieves focused elements dynami-
cally within the specified effort. We formalized the problem
and calculated the upper bound of benefit for system eval-
uation.

In general, existing XML-IR systems calculate relevance
score between each element and the input query using some
scoring formula, and the length (in characters or in number
of terms) of the element is included as a factor of the scoring
formula [12], and scores are decreased for longer elements
to avoid overestimation of longer elements. By handling
element length separately as reading effort, we believe we
can apply our scheme to other systems.

In future work, we will examine ways of distinguishing the
portion of the retrieved element to be read. Furthermore, for
XML documents created by marking up original PDF files,
there is potential to show search result elements mapped on
an image of a physical page [11]. We will look at ways of
integrating our system with this type of user interface. A
major drawback of our current scheme is that users must
specify the threshold of effort. We believe that developing
user interfaces that can smoothly retrieve result elements
when users change the threshold value of effort is a promising
solution. When we consider about the user interfaces, we
can also imagine the opposite case in which users change the
threshold value of benefit and the system retrieves elements
which minimize effort.

6. REFERENCES

[1] C. L. A. Clarke. Controlling overlap in
content-oriented XML retrieval. In SIGIR, pages
314-321, 2005.

[2] INEX. INitiative for the Evaluation of XML Retrieval.
http://inex.is.informatik.uni-duisburg.de/.

[3] R. Kaushik, R. Krishnamurthy, J. F. Naughton, and
R. Ramakrishnan. On the integration of structure
indexes and inverted lists. In SIGMOD, pages
779-790, 2004.

[4] G. Kazai and M. Lalmas. INEX 2005 evaluation
measures. In INEX| pages 16-29, 2005.

[5] S. Malik, G. Kazai, M. Lalmas, and N. Fuhr.
Overview of INEX 2005. In INEX, pages 1-15, 2005.

[6] S. Malik, A. Trotman, M. Lalmas, and N. Fuhr.
Overview of INEX 2006. In INEX, pages 1-11, 2006.

[7] S. Martello and P. Toth. Knapsack problems:
algorithms and computer implementations. John
Wiley & Sons Inc, New York, 1990.

[8] J. Pehcevski, J. Kamps, G. Kazai, M. Lalmas,

P. Ogilvie, B. Piwowarski, and S. Robertson. INEX
2007 evaluation measures. In INEX 2007
Pre-Proceedings, 2007.

[9] J. Pehcevski and J. A. Thom. HiXEval: Highlighting
XML retrieval evaluation. In INEX, pages 43-57, 2005.

[10] T. Shimizu and M. Yoshikawa. A ranking scheme for
XML information retrieval based on benefit and
reading effort. In ICADL, pages 230-240, 2007.

[11] T. Shimizu and M. Yoshikawa. XML information
retrieval considering physical page layout of logical
elements. In WebDB, 2007.

[12] M. Theobald, R. Schenkel, and G. Weikum. An
efficient and versatile query engine for TopX search. In
VLDB, pages 625-636, 2005.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

