
Multi-user Routing
to Single Destination with Confluence

Kazuki Takise, Yasuhito Asano and Masatoshi Yoshikawa
Kyoto University

Kyoto, Japan 606-8501
takise@db.soc.i.kyoto-u.ac.jp, {asano, yoshikawa}@i.kyoto-u.ac.jp

ABSTRACT
The recent increase in attention to ride-sharing applications
demonstrates the importance of routing algorithms for mul-
tiple users who obtain benefits from confluence, that is, trav-
eling together on all or part of their routes. We propose novel
and flexible formulation of routing optimization for multiple
users who have their respective sources and a single common
destination. The formulation is general enough to express
each user’s benefit (or cost) of confluence for every com-
bination of users. Hence, the formulation can represent a
wide range of applications and subsumes almost all formula-
tions proposed in literature. We establish an efficient exact
method for the formulation. Interestingly, we found well-
known Dreyfus-Wagner Algorithm for the Minimum Steiner
Tree Problem (MSTP) is extensible for ours, although our
formulation is much harder than the MSTP. Our experimen-
tal results obtained on large-scale road networks reveal that
our method is efficient in practical settings.

Keywords
Confluence; graph; optimization; road network; routing

Categories and Subject Descriptors
G.2 [DISCRETE MATHEMATICS]: Graph TheoryGraph
algorithms

1. INTRODUCTION
Along with recent attention to ride-sharing applications

and research into automatic driving, routing optimization
for multiple users who obtain benefits by traveling together
is increasing its importance. Routing optimization with con-
fluence can be applied to various applications in which peo-
ple and objects do not just move by car, but also move in
various ways; thus, flexible formulations and efficient opti-
mization methods are essential.
In this paper, we propose a novel and flexible formulation

and an efficient algorithm of routing optimization for mul-

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SIGSPATIAL’16 October 31 - November 03, 2016, Burlingame, CA, USA
c⃝ 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4589-7/16/10.

DOI: http://dx.doi.org/10.1145/2996913.2997018

Figure 1: Routes for three users on a road network.
Dashed arrows indicate their shortest paths. Solid
lines indicate routes for travelling together.

tiple users who have their respective sources and a single
common destination. Our formulation is highly generalized
so that it is applicable not only to ride-sharing applications,
but also to other various ones in our daily lives. As a simple
example, let us consider the situation wherein several friends
gather at the venue of an event. Figure 1 illustrates two vari-
ants of the routes of three users u1, u2 and u3 to the venue
vT on a road network. Dashed arrows depict their shortest
paths to the destination. On the other hand, Solid arrows
depict an example of the routes with confluence. Although
these routes are longer than the respective shortest paths,
the psychological fatigue each user actually suffers is consid-
ered to be smaller when traveling together with friends and
having conversations.

Our formulation of routing optimization for multiple users
does not simply use the length of each path itself; rather,
we consider that the cost of users traveling together can
be discounted, and the total cost of users traveling to the
destination might be less than that of the shortest paths.
Thus, the routes with confluence, not the shortest paths,
can be found as the optimum solution of our formulation.
This cost depends on with whom each user travels along
the path in many cases. Note that ‘traveling cost’ does not
necessarily represent financial expense, but it might also be
the physical or psychological cost of traveling through the
path.

Let us consider another application, where a large-scale
event such as a sports game or an international conference
is held. In this case, users who travel to the venue of the
event by taxi can reduce the total travel expense by sharing
their routes and using fewer taxis.

In many applications including the above scenarios, the
traveling costs vary depending on the number of users trav-
eling together. These cases frequently appear in our daily

lives; however, little work has been directed at them. In
addition, the traveling costs can also vary depending on the
combination of users traveling together. In the case of famil-
iar friends, which we mentioned above, the traveling costs
may vary depending on how familiar each pair of friends are.
Moreover, even if some people travel together in the same

group, the confluence benefits can vary from user to user.
For example, in the situation where elderly people or people
with disabilities travel with able-bodied people, the benefit
for those elderly people or people with disabilities may be
large, while the benefit for able-bodied people is small.
As mentioned above, routing optimization with confluence

has various applications. However, no previous research can
handle these applications uniformly and efficiently. In this
paper, we formulate the above problem and propose an exact
optimization method for the formulation. Our experimental
results obtained on large-scale road networks reveal that the
proposed method is practically efficient.
In this paper, we have two noticable contributions. Firstly,

our proposed formulation is generalized so that confluence
benefit of each user depends on the members of the group
traveling together. This aspect enables our formulation to
be applicable to a wide variety of applications. Secondly,
we clarify the theoretical relation between two well-known
combinatorial optimization problems, the Minimum Steiner
Tree Problem (MSTP) and the Buy-at-Bulk Problem, which
have many similar aspects, but have not been associated
with each other. We give more detailed explanation about
these problems in Section 1.1. In fact, we formulate our
problem by successfully extracting from these problems sev-
eral aspects, which are necessary for routing optimization
for multiple users. The proposed method is generalized so
successfully that it can be executed as efficiently as Dreyfus-
Wagner Algorithm, one of the most efficent exact methods
for the MSTP. Some approximation methods for the Buy-
at-Bulk Problem can be applied to our formulation with an
additional constraint.

2. RELATED WORK

2.1 Minimum Steiner Tree Problem
Given an undirected graph and a set of vertices as ter-

minal points, the Minimum Steiner Tree Problem (MSTP)
finds a tree interconnecting the terminal points such that the
total weight of the edges of the tree is minimized. This prob-
lem has been under investigation in various formulations for
many years[1][2].
Our problem generalizes the MSTP. Since the MSTP is

known to be NP-hard, our problem is also NP-hard. Fur-
thermore, our exact method is a natural, but non-trivial
generalization of Dreyfus-Wagner Algorithm[3], which is a
well-known exact method for the MSTP. We discover an
interesting fact that our exact method is executable as effi-
ciently as Dreyfus-Wagner Algorithm although our problem
is a generalization of the MSTP.

2.2 Buy-at-Bulk Problem
The Buy-at-Bulk Problem (BaBP)[4] is one of the network

design problems based on a multicommodity network flow
problem with demands. The network capacity is bought
“wholesale” to guarantee the connectivity from all sources
to corresponding sinks. The capacity is sold with a “volume
discount”: the more capacity that is bought, the lower the

price per unit of bandwidth. Various formulations of this
problem exist, and the Single-Source Buy-at-Bulk Problem
(SSBaBP)[5][6] is especially similar to our problem. Our
problem generalizes the cost in the SSBaBP, whereas our
problem add a tree constraint of its solution to the SSBaBP.
In Section 7, we extend an approximation method for the
SSBaBP to our problem. This extension presents a theoret-
ical evidence of the relation between these problems.

2.3 Multi-user Routing
Some research has addressed routing optimization for mul-

tiple users considering confluence benefits[7][8]. Our prob-
lem is formulated such that the traveling costs can vary
depending on the combination of users traveling together
unlike the above research.

Some previous research has focused on vehicle ride sharing
such as for taxis[9][10][11][12]. In such research, users do not
move from their initial points by themselves, and they can
only travel to their destinations by car. Thus, in the case of
routing optimization to a single destination, our research is
more generalized than previous research.

3. PRELIMINARIES
In our problem, we assume that once some users start

traveling together, they do not diverge and travel separately.
There are two reasons to introduce this assumption. First, it
is difficult to estimate the cost of the divergence because the
cost depends on various factors in real situations. Rather,
in situations where users go to a single destination, users are
unlikely to diverge on their paths. Second, this assumption
enables our simple formulation and efficient exact method.

3.1 Notation
We model a road network by a directed graph G(V,E),

where the vertices V represent locations and the directed
edges E represent road segments. Each edge e ∈ E is given
with its length le ∈ R+, which denotes the distance between
both ends. Let d(s, t) be the shortest distance between ver-
tices s and t.

Let U be a set of users given in a single query, where each
user is given with their initial point su ∈ V , and each query
also includes a single common destination vT ∈ V .

Let Ru be a path from su to vT , and eu(i) represents the
i-th edge from su in Ru. Let |Ru| be the number of edges
in Ru.

3.2 Definition
In this section, we define the concept of confluence, which

is one of the most distinguishing aspects of this research.

Definition 1. The confluence of two users u1, u2 means
to start traveling together from a common vertex v to the
destination vT . We call this v a confluence point of u1

and u2. The confluence point is defined by a pair of integer
i(u1, u2) and i(u2, u1), each of which represents the num-
ber of vertices from su1 and su2 to their confluence point
respectively.

We also introduce the term confluence group, which means
a group of users traveling together.

Definition 2. If two users u1, u2 have a confluence point,
they belong to the same confluence group on their com-
mon path from the confluence point to the destination. Given

a user u and an edge e inRu, the confluence group is uniquely
specified, and u travels on e together with the users in the
confluence group. Let Cu(i) be the confluence group that u
belongs to in the i-th edge of Ru.

If two users u1, u2 have a confluence point, their paths
from the confluence point to the destination must be iden-
tical. Therefore, we introduce the following constraints.

|Ru1 | − i(u1, u2) = |Ru2 | − i(u2, u1) ≥ 0 (1)

For 0 ≤ k ≤ |Ru1 | − i(u1, u2),

eu1(|Ru1 | − k) = eu2(|Ru2 | − k) (2)

4. PROBLEM FORMULATION
In this paper, we do not simply consider lengths of edges

on road networks; rather, we consider the traveling costs,
which are the lengths of the edges multiplied by the weights,
determined by the combination of users traveling together
on the edges.

Definition 3. We define the traveling cost of user u trav-
eling through edge e in a confluence group C as the length
of e multiplied by a function α : (U, 2U) → R+, which is
called weight function.

Based on the above definitions, our problem is formulated
as follows.

Input a set of users U , an initial position of each user su,
and a destination vT

Output a set of routes of each user u from su to vT and a
set of confluence points

Objective function (minimized)

∑
u∈U

|Ru|∑
i=1

α(u,Cu(i)) ∗ leu(i) (3)

Output satisfies Equation (1), (2).

5. PROPOSED METHOD
In this proposed method, we consider a state in which a

confluence group C exists at a vertex v. Let dp(C, v) be the
minimum total cost of each user u in C traveling from su to
v based on the objective function defined as Equation (3).
Let Ru(v) be a route of a user u from su to a vertex v, and
the exact definition of dp(C, v) is as follows.

dp(C, v) = min(
∑
u∈C

|Ru(v)|∑
i=1

α(u,Cu(i)) ∗ leu(i)) (4)

This proposed method is based on dynamic programming,
which calculates dp(C, v) for every confluence group C and
vertex v. First, we consider the initial states in which each
user u is located at su and belongs to the confluence group
that consists of only u. Then, several transitions are per-
formed for these states, and eventually, dp(U, vT) is calcu-
lated as the minimum value of the objective function.
The state in which a confluence group C exists at a vertex

v arises through one of the two transitions below.

Confluence transition Two confluence groups C1, C2 merge
together at a vertex v and turn into a single confluence
group C.

Algorithm 1 Proposed Algorithm

1: for all C ⊂ U do
2: for all v ∈ V do
3: for all C1 ∈ 2C s.t. C1 ̸= 0 and C1 ̸= C do
4: C2 ← C \ C1

5: c← dp(C1, v) + dp(C2, v)
6: dp′(C, v)← min(dp′(C, v), c)

7: Q← an empty priority queue
8: for all v ∈ V do
9: Q← insert (dp′(C, v), v)

10: while the size of Q > 0 do
11: (c, v)← a pair popped from Q
12: if c < dp(C, v) then
13: dp(C, v)← c
14: for all w ∈ V s.t. w is adjacent to v do
15: c′ ← c+ traveling cost from v to w
16: Q← insert (c′, w)

Traveling transition The confluence group C, which is
formed at a vertex other than v through a confluence
transition, travels to a vertex v through the shortest
path.

Let dp′(C, v) be the minimum cost of the state in which a
confluence group C exists at a vertex v and which arises par-
ticularly through confluence transitions. Note that dp(C, v)
and dp′(C, v) do not depend on the users who do not belong
to C because we assume that the users in the same conflu-
ence group do not diverge. dp(C, v) and dp′(C, v) can be
calculated as follows.

dp(C, v) = min(dp′(C,w) + d(w, v) | w ∈ V) (5)

Let {C1, C2} be any partition of C,

dp′(C, v) = min(dp(C1, v) + dp(C2, v)) (6)

Equation (5) calculates traveling transitions, and given
the values of dp′(C, v) for all C and v, dp(C, v) can be cal-
culated using this formula. The specific steps of the calcu-
lation is explained in Algorithm 1. Equation (6) calculates
confluence transitions, and given the values of dp(C′, v) for
all v and C′, which is a subset of C, dp′(C, v) can be calcu-
lated using this formula. The optimum routes and conflu-
ence points can be obtained as the output of the problem by
storing the transition in each calculation.

The pseudocode of the proposed method is shown in Algo-
rithm 1. In this algorithm, a priority queue Q is introduced
so that the order of the calculation of traveling transition
can be dynamically changed. This enables our algorithm
to be executed efficiently and applied to various applica-
tions. The worst-case time complexity of Algorithm 1 is
O(3|U||V |+ 2|U||E| log |V |).

6. EXPERIMENTS
This section presents an evaluation of the performance of

our method in terms of execution time and memory usage.

6.1 Data and Settings
We conduct our experiments using C++ (gcc 5.2.0) on

a computer running Mac OSX 10.11.5 on an Intel Core i5

City Vertices Edges Acquisition Year/Month

Tokyo 8901 20321 2016/03
Kyoto 6617 16658 2016/03

Table 1: Dataset

(a) Average Execution time (b) Memory usage

Figure 2: Performance of our algorithm

1600MHz CPU with 4GB of RAM. We export two road net-
works of the major cities in Japan, Tokyo and Kyoto from
Open Street Map Japan1. We precompute the data obtained
from Open Street Map Japan by excluding disconnected ver-
tices. The basic information of the graphs after the precom-
putation is summarized in Table 1.
The weight function can return arbitrary positive real

numbers; however, in this section, in order to reflect the
real situations that we consider, we limit the values within
the following range: 1/|C| ≤ α(u,C) < 1. We choose the
values randomly within the range for each query. Note that
we set the values as we explained above simply to reflect
real-world situations as faithfully as possible. Even if we
set the values to any other, the execution time and mem-
ory usage of our algorithms do not change substantially. In
this experiment, we generate 100 queries for each number of
users and investigate the execution time and memory usage
of our algorithms. For each query, the initial point of each
user and the destination are generated randomly.

6.2 Experimental Results
Figure 2(a) shows that our algorithm is executable within

ten seconds for less than 10 people on average. Since the
number of users in the applications of our problem is rela-
tively small, our method is sufficiently efficient for the ap-
plication that we assume.
Figure 2(b) shows that our algorithm only requires less

than a hundred MB of memory, which is sufficiently within
the range of standard computers today.

7. DISCUSSIONS
Although our proposed exact method is intended for a

relatively small number of users, approximation methods for
a large number of users would be also useful.
The approximation methods for the MSTP[1][2] are dif-

ficult to apply to our problem. However, some approxima-
tion methods can be extended for the BaBP. In fact, we
actually found that the approximation method proposed by
Awerbuch and Azar[4] can be extended to our formulation
with an additional constraint and this method guarantees
an O(log2 n) randomized approximation ratio. The details
about this method are omitted due to space limitations.

1https://openstreetmap.jp/

The fact that we obtain the approximation method above
gives an evidence that our problem is deeply related to the
BaBP. We have already explained the relation between our
problem and the MSTP: our formulation generalizes the
MSTP although the time complexity of our exact method is
the same as Dreyfus-Wagner Algorithm. In other words, we
found interesting facts about the relation between the MSTP
and the BaBP, although these two problems have not been
associated with each other to the best of our knowledge.

8. CONCLUSION
This paper highly generalized the previous works on multi-

user routing optimization with confluence and proposed an
efficient exact method for the problem. A large-scale ex-
periment demonstrated that our proposed method is prac-
tically efficient. For future work, we plan to propose formu-
lation with some constraints related to time. Moreover, we
also plan to propose practical and theoretical approximation
methods to construct a reliable system for a large number
of users.

9. REFERENCES
[1] Winter P, “Steiner problem in networks”, a survey.

Networks 17(2), pp. 129–167, 1987.

[2] Prömel, Hans Jürgen, Steger, Angelika, “The Steiner
tree problem: a tour through graphs, algorithms,
andcomplexity”, Advanced Lectures in Mathematics,
Basics 3: Complexity, pp. 41-62, 2002.

[3] S. E. Dreyfus, R. A. Wagner, “The Steiner problem in
graphs”, Networks, 1, pp. 195–207, 1972.

[4] Awerbuch B, Azar Y, “Buy-at-Bulk Network Design”,
Proceedings of IEEE FOCS, pp. 542–547, 1997.

[5] Ashish G, Ian P, “An Oblivious O(1)-Approximation
for Single Source Buy-at-Bulk”, Proceedings of IEEE
FOCS, pp. 442–450, 2009.

[6] Srinivasagopalan S, Busch C, Iyengar, “An Oblivious
Spanning Tree for Single-Sink Buy-at-Bulk in Low
Doubling-Dimension Graphs”, IEEE Transactions on
Computers, Volume: 61, Issue: 5, pp. 700–712, 2012.

[7] Bjoern Z, Alexander M, “Calculating Meeting Points
for Multi User Pedestrian Navigation Systems”,
Proceedings of Advances in Artificial Intelligence, pp.
347–356, 2011.

[8] Zhang X, Asano Y, Yoshikawa M, “Mutually beneficial
Confluent Routing”, IEEE Transactions on Knowledge
and Data Engineering, Volume: 28, No. 10, pp.
2681-2696, 2016.

[9] Savelsbergh M. W. P, Sol M, “The general pickup and
delivery problem”, Transportation Science, Volume:
29, pp. 17–29, 1995.

[10] Cao B, Alarabi L, Mokbel M. F, Basalamah A, “A
scalable dynamic ride sharing system”, Proceedings of
16th MDM, pp. 4–13, 2015.

[11] Drews F, Luxen D, “Multi-hop ride sharing”,
Proceedings of 6th SoCS, pp. 71–79, 2013.

[12] Geisberger R, Luxen D, Neubauer S, Sanders P,
Volker L, “Fast detour computation for ride sharing”,
10th Workshop on Algorithmic Approaches for
Transportation Modelling Optimization and Systems,
pp 88–99, 2009.

